Machine tools:
The Industrial Revolution could not have developed without machine tools, for they enabled manufacturing machines to be made. They have their origins in the tools developed in the 18th century by makers of clocks and watches, and scientific instrument makers to enable them to batch-produce small mechanisms. The mechanical parts of early textile machines were sometimes called 'clock work' due to the metal spindles and gears they incorporated. The manufacture of textile machines drew craftsmen from these trades and is the origin of the modern engineering industry. Machine makers early developed special purpose machines for making parts.
Machines were built by various craftsmen - carpenters made wooden framings, and smiths and turners made metal parts. Because of the difficulty of manipulating metal, and the lack of machine tools, the use of metal was kept to a minimum. Wood framing had the disadvantage of changing dimensions with temperature and humidity, and the various joints used tended to rack (work loose) over time. As the Industrial Revolution progressed, machines with metal frames became more common, but required machine tools to make them economically. Before the advent of machine tools metal was worked manually using the basic hand tools of hammers, files, scrapers, saws and chisels. Small metal parts were readily made by this means, but for large machine parts, such as castings for a lathe bed, where components had to slide together, the production of flat surfaces by means of the hammer and chisel followed by filing, scraping and perhaps grinding with emery paste, was very laborious and costly.
Apart from workshop lathes used by craftsmen, the first large machine tool was the cylinder boring machine, used for boring the large-diameter cylinders on early steam engines. They were to be found at all steam-engine manufacturers. The planing machine, the slotting machine and the shaping machine were developed in the first decades of the 19th century. Although the milling machine was invented at this time, it was not developed as a serious workshop tool until during the Second Industrial Revoluton
Military production had a hand in the development of machine tools. Henry Maudslay, who trained a school of machine tool makers early in the 19th century, was employed at the Royal Arsenal, Woolwich, as a young man where he would have seen the large horse-driven wooden machines for cannon boring made and worked by the Verbruggans. He later worked for Joseph Bramah on the production of metal locks, and soon after he began working on his own he was engaged to build the machinery for making ships' pulley blocks for the Royal Navy in the Portsmouth Block Mills. These were all metal, and the first machines for mass production and making components with a degree of interchangeability. The lessons Maudslay learned about the need for stability and precision he adapted to the development of machine tools, and in his workshops he trained a generation of men to build on his work, such as Richard Roberts, Joseph Clement and Joseph Whitworth.
Maudslay made his name for his lathes and precision measurement. James Fox of Derby had a healthy export trade in machine tools for the first third of the century, as did Matthew Murray of Leeds. Roberts made his name as a maker of high-quality machine tools, and as a pioneer of the use of jigs and gauges for precision workshop measurement.
I hope that my posts help 2nd year english students.
Have a nice day
The Industrial Revolution could not have developed without machine tools, for they enabled manufacturing machines to be made. They have their origins in the tools developed in the 18th century by makers of clocks and watches, and scientific instrument makers to enable them to batch-produce small mechanisms. The mechanical parts of early textile machines were sometimes called 'clock work' due to the metal spindles and gears they incorporated. The manufacture of textile machines drew craftsmen from these trades and is the origin of the modern engineering industry. Machine makers early developed special purpose machines for making parts.
Machines were built by various craftsmen - carpenters made wooden framings, and smiths and turners made metal parts. Because of the difficulty of manipulating metal, and the lack of machine tools, the use of metal was kept to a minimum. Wood framing had the disadvantage of changing dimensions with temperature and humidity, and the various joints used tended to rack (work loose) over time. As the Industrial Revolution progressed, machines with metal frames became more common, but required machine tools to make them economically. Before the advent of machine tools metal was worked manually using the basic hand tools of hammers, files, scrapers, saws and chisels. Small metal parts were readily made by this means, but for large machine parts, such as castings for a lathe bed, where components had to slide together, the production of flat surfaces by means of the hammer and chisel followed by filing, scraping and perhaps grinding with emery paste, was very laborious and costly.
Apart from workshop lathes used by craftsmen, the first large machine tool was the cylinder boring machine, used for boring the large-diameter cylinders on early steam engines. They were to be found at all steam-engine manufacturers. The planing machine, the slotting machine and the shaping machine were developed in the first decades of the 19th century. Although the milling machine was invented at this time, it was not developed as a serious workshop tool until during the Second Industrial Revoluton
Military production had a hand in the development of machine tools. Henry Maudslay, who trained a school of machine tool makers early in the 19th century, was employed at the Royal Arsenal, Woolwich, as a young man where he would have seen the large horse-driven wooden machines for cannon boring made and worked by the Verbruggans. He later worked for Joseph Bramah on the production of metal locks, and soon after he began working on his own he was engaged to build the machinery for making ships' pulley blocks for the Royal Navy in the Portsmouth Block Mills. These were all metal, and the first machines for mass production and making components with a degree of interchangeability. The lessons Maudslay learned about the need for stability and precision he adapted to the development of machine tools, and in his workshops he trained a generation of men to build on his work, such as Richard Roberts, Joseph Clement and Joseph Whitworth.
Maudslay made his name for his lathes and precision measurement. James Fox of Derby had a healthy export trade in machine tools for the first third of the century, as did Matthew Murray of Leeds. Roberts made his name as a maker of high-quality machine tools, and as a pioneer of the use of jigs and gauges for precision workshop measurement.
I hope that my posts help 2nd year english students.
Have a nice day